Porosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation

نویسندگان

  • J. Ghiasi-Freez Iranian Central Oil Fields Company (ICOFC), Subsidiary of National Iranian Oil Company (NIOC), Iran
  • M. Abedini Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
  • M. Ziaii Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
  • Y. Negahdarzadeh Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده مقاله:

The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types of 682 pores were used for training two intelligent models, BPN (back-propagation network) and SAE (stacked autoencoder). The trained models take the geometrical properties of pores to classify the type of six porosity types including intra-particle, inter-particle, vuggy, moldic, biomoldic, and fracture. The MSE values for the BPN and SAE models were found to be 0.0042 and 0.0038, respectively. The precision, recall, and accuracy of the intelligent models for classifying the types of pores were calculated. The BPN model was able to correctly recognize 193 intra-particle pores out of 197 ones, 45 inter-particle pores out of 50 ones, 7 vuggy pores out of 9 ones, 10 moldic pores out of 12 ones, 2 biomoldic pores out of 3 ones, and 6 fractures out of 7 ones. Also the SAE model was able to correctly classify 193 intra-particle pores out of 197 ones, 46 inter-particle pores out of 50 ones, 8 vuggy pores out of 9 ones, 10 moldic pores out of 12 ones, 3 biomoldic pores out of 3 ones, and 7 fractures out of 7 ones. The results obtained showed that the SAE model carried out a bit more accuracy for classification of the inter-particle, vuggy, biomoldic, and fracture pores.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Learning from LDA Using Deep Neural Networks

Latent Dirichlet Allocation (LDA) is a three-level hierarchical Bayesian model for topic inference. In spite of its great success, inferring the latent topic distribution with LDA is time-consuming. Motivated by the transfer learning approach proposed by Hinton et al. (2015), we present a novel method that uses LDA to supervise the training of a deep neural network (DNN), so that the DNN can ap...

متن کامل

Image Classification Using Neural Networks and Ontologies

The advent of extremely powerful home PCs and the growth of the Internet have made the appearance of multimedia documents a common sight in the computer world. In the world of unstructured data composed of images and other media types, classification often comes at the price of countless hours of manual labor. This research aims to present a scalable system capable of examining images and accur...

متن کامل

Image Classification using Fast Learning Convolutional Neural Networks

In this paper, we propose an image classification method for improving the learning speed of convolutional neural networks (CNN). Although CNN is widely used in multiclass image classification datasets, the learning speed remains slow for large amounts of data. Therefore, we attempted to improve the learning speed by applying an extreme learning machine (ELM). We propose a learning method combi...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 9  شماره 2

صفحات  513- 525

تاریخ انتشار 2018-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023